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According to life history theory, animals living in extreme environments have evolved specific
behavioral and physiological strategies for survival. However, the genetic mechanisms
underpinning these strategies are unclear. As the highest geographical unit on Earth, the
Qinghai–Tibet Plateau is characterized by an extreme environment and climate. During long-
term evolutionary processes, animals that inhabit the plateau have evolved specialized
morphological and physiological traits. The plateau pika (Ochotona curzoniae), one of the
native small mammals that evolved on the Qinghai–Tibet Plateau, has adapted well to this cold
and hypoxic environment. To explore the genetic mechanisms underlying the physiological
adaptations of plateau pika to extremely cold ambient temperatures, we measured the
differences in resting metabolic rate (RMR) and metabolism-related gene expression in
individuals inhabiting three distinct altitudes (i.e., 3,321, 3,663, and 4,194m). Results
showed that the body mass and RMR of plateau pika at high- and medium-altitudes
were significantly higher than those at the low-altitude. The expression levels of
peroxisome proliferator-activated receptor α (pparα), peroxisome proliferator-activated
receptor-γ coactivator-1α (pgc-1α), and the PR domain-containing 16 (PRDM16) in white
(WAT) and brown (BAT) adipose tissues of plateau pika from high- andmedium-altitudes were
significantly higher than in pika from the low-altitude region. The enhanced expression levels of
pgc-1α and pparα genes in the WAT of pika at high-altitude showed that WAT underwent
“browning” and increased thermogenic properties. An increase in the expression of
uncoupling protein 1 (UCP1) in the BAT of pika at high altitude indicated that BAT
increased their thermogenic properties. The gene expression levels of pparα and pgc-1α
in skeletal muscles were significantly higher in high-altitude pika. Simultaneously, the
expression of the sarcolipin (SLN) gene in skeletal muscles significantly increased in high-
altitude pika. Our results suggest that plateau pika adapted to an extremely cold environment
via browning WAT, thereby activating BAT and enhancing SLN expression to increase non-
shivering thermogenesis. This study demonstrates that plateau pika can increase thermogenic
gene expression and energymetabolism to adapt to the extreme environments on the plateau.
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INTRODUCTION

Animals living in different habitats are affected by various
ecological factors such as photoperiod, food quantity or
quality, and temperature (Van Beest et al., 2012; Hanya and
Chapman, 2013; Olanrewaju et al., 2013). To adapt to a changing
climate, animals have evolved specialized morphological,
behavioral, and physiological traits (Zhu et al., 2017a;
Mannuthy, 2017; Fox et al., 2019). For example, an
experimental analysis of Trochilidae and Zonotrichia capensis
showed a correlation between Hb-O2 affinity and native elevation
(Projecto-Garcia et al., 2013; Cheviron et al., 2014). Tamiasciurus
hudsonicus and Lepus americanus respond to environmental
changes by protecting a high and stable body temperature
with changes in body temperature and heart rate while
reducing behavioral changes (Menzies, 2021). Moreover, as
ambient temperature decreases, animals may adjust their
behavior and/or physiology to reduce their energy expenditure
(Humphries et al., 2005; Zub et al., 2009). Animals such as
Mustela nivalis, Spermophilus parryii, and Rhabdomys pumilio
can huddle together or stay in the nest to conserve energy and
maintain body temperature (Geiser, 2004; Scantlebury et al.,
2006; Sukhchuluun et al., 2018). Many studies have shown
phenotypic and physiological adaptations to the environment,
and that species-specific adaptations to extreme environments are
reflected at the gene transcription level. Studies on Anolis
carolinensis, Rhinopithecus bieti, Thermophis baileyi, and Sus
scrofa have uncovered the gene-expression mechanisms
underlying their behavioral and physiological adaptations (Li
et al., 2013; Yu et al., 2016; Li T. et al., 2018; Kabelik et al., 2021).

Energy metabolism plays an important role in physiological
adaptation, which influences animal distribution, abundance,
reproductive success, and fitness (Yaskin, 2011; Healy et al.,
2013; Tickle et al., 2018). Energy metabolism is affected by
environmental and physiological factors, including body mass,
food quality/quantity, and temperature, which substantially affect
an animal’s heat production and thermoregulation (McNab,
2009; Tattersall et al., 2012). Elevated thermogenic capacity is
crucial to an animal’s survival in a cold environment (Zhang et al.,
2017). Thermogenic capacity can be measured as maximum
metabolic rate, which is comprised of resting metabolic rate
(RMR), shivering thermogenesis (ST), and non-shivering
thermogenesis (NST) (Nespolo et al., 2001; Chi and Wang,
2011; Mineo et al., 2012). Compared with those species
inhabiting cold environments, animals inhabiting warm
environments, i.e., Meriones unguiculatus and Diplolaemus
leopardinus, have a lower RMR (Ding et al., 2018; Vicenzi
et al., 2021). Similarly, the RMRs of Tupaia belangeri and
Chaetops frenatus in winter are usually higher than in summer
(Zhu et al., 2012; Oswald et al., 2018). Furthermore, animals can
adapt to the ambient temperature by changing their thermogenic
characteristics, such as increasing protein content, cytochrome c
oxidase activity, and leptin expression (Meyer et al., 2010; Wang
et al., 2019).

As the highest plateau on Earth, the Qinghai–Tibet Plateau has
an average altitude of more than 4,000 m. Its unique topography
has formed extreme environmental and climatic characteristics

(Sun et al., 2014). Animals that inhabit the plateau at high
altitudes face the challenging environment of hypoxia and low
ambient temperatures (Wang et al., 2011). The Qinghai–Tibet
Plateau is one of the most sensitive regions to global climate
change (Liu and Chen, 2000). A progressive reduction in
temperature occurs with the ascent to high elevation, and
high-altitude environments mean considerable physiological
challenges to animals (Storz and Scott, 2019). Animals may
adjust their physiological characteristics by spending energy to
generate heat to survive in high-altitude environments. One
important question is how animals regulate their metabolism
and maintain their effective energy in extreme environments
(O’Brien et al., 2020). Studies of passerine birds, lizards, and
Parnassius butterflies inhabiting the three high-altitude regions of
the Qinghai–Tibet Plateau found that their gene expression
correlates with altitude, suggesting that high-altitude
environments may drive similar expression patterns in high-
altitude species (Yang et al., 2015; Hao et al., 2019; Su et al., 2020).

Adipose tissue, which can be divided into white adipose tissue
(WAT) and brown adipose tissue (BAT) in mammals, plays an
extremely important role in the regulation of energy homeostasis
in animals (Harms and Seale, 2013; Elsen et al., 2014). The PR
domain of 16 (PRDM16) and peroxisome proliferator-activated
receptor γ coactivator-1α (pgc-1α) were key transcriptional
regulators in mice and induced classic brown fat accumulation
in hypothermia induction (Seale et al., 2011). Peroxisome
proliferation receptor-α (pparα) mediated lipid thermogenesis
by sensing pgc-1α and PRDM16 expression as a key component of
brown fat thermogenesis (Hondares et al., 2011). Studies have
shown that the deletion of the SLN gene in skeletal muscle causes
mice to fail to maintain body temperature during exposure to
acute cold, demonstrating that sarcolipin (SLN) is an important
player in adaptive thermogenesis (Bal et al., 2012). There was also
an increase in the transcriptional regulators of mitochondrial
biogenesis, such as pparα and pgc-1α (Handschin et al., 2003;
Ryder et al., 2003; Schaeffer et al., 2004). The metabolic function
of the liver is controlled by insulin and other metabolic
hormones. Studies have shown that under food serious
shortage, cAMP-response element binding protein (CREB) and
pgc-1α are key transcriptional coactivators in hepatic
gluconeogenesis in two experimental mouse models; they play
a key role in maintaining long-term gluconeogenesis (Herzig
et al., 2001; Oh et al., 2013).

The plateau pika (Ochotona curzoniae) is a keystone species on
the Qinghai–Tibet plateau (Yu et al., 2012) and plays an
important role in maintaining the biodiversity and stability of
the alpine meadow ecosystem (Smith and Foggin, 1999; Wilson
and Smith, 2015). It inhabits the alpine regions at an altitude of
3,100–5,300 m above sea level and is well adapted to extreme
hypoxia, cold, and food deprived environments (Cao et al., 2017).
In this scenario, plateau animals including plateau pika face
severe energetic challenges to maintain their core body
temperature (Van Sant and Hammond, 2008; Zhang et al.,
2012; Speakman et al., 2021). Previous studies have found that
at different altitudes, the life history strategies and personalities of
plateau pika varied significantly (Liu et al., 2012; Qu et al., 2013;
Qu et al., 2019; Tan et al., 2020), accompanied by differences in fat
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accumulation and metabolic rate (Yang et al., 2006). As ambient
temperatures decrease, subcutaneous WAT “browned”, and
adipose tissue heat production increased (Bai et al., 2015; Li
et al., 2019). However, studies on the expression of thermogenic
genes in adipose tissue and other thermogenic tissues of plateau
pika at different altitudes are limited. In the current study, we
live-trapped plateau pika at different altitudes.Wemeasured their
metabolic rate and transcriptome expression levels in adipose
tissue, liver, and skeletal muscle in order to profile gene
expression patterns and investigate the role of transcriptional
regulation in tissue-level metabolic adaptation to high altitudes.
We aimed to test the following hypotheses: 1) the RMR of the
plateau pika increases with rising altitude, and 2) metabolism-
related gene expression synchronously increases with rising
altitude, adapting to the extreme environments of the
Qinghai–Tibet Plateau.

MATERIALS AND METHODS

Animals and Sample Collection
Plateau pikas inhabiting high-, middle-, and low-altitude regions
were live trapped from Maduo, (4,194 m above sea level, n � 24),
Guide, (3,663 m, n � 24), and Guinan (3,321 m, n � 24),
respectively, in Qinghai Province, in December 2020. Maduo
has an annual average temperature of −4°C and an average
monthly temperature below −3.0°C, classifying it as an alpine
steppe climate. The annual average temperature of Guide is
−3.7°C; a plateau continental climate. Guinan does not
experience a severely cold winter or an intensely hot summer,
and the annual average temperature is 2.3°C; as such, it is also
considered a plateau continental climate.

Ten pikas from each altitudinal region were immediately
anesthetized and dissected after capture (five females and five
males at each altitude). The adipose tissue, liver, andmuscle tissue
were immediately preserved in liquid nitrogen and stored at
−80°C until further RNA extraction and analyses. A further
sample of plateau pikas (n � 14) from each altitude were live-
transported to the animal laboratory in Xining (2,261 m above sea
level, outdoor temperature −2°C, indoor temperature 20°C). They
were kept in 545 × 395 × 200 mm polypropylene material cages
separately under 12 L: 12 D lighting conditions, and provided
with artificial food (Tianjin Tongyu Feed Sales Co. Ltd.) and ad
libitum water. Metabolic experiments were conducted
within 24 h.

Metabolic Trials and Non-shivering
Thermogenesis (NST)
The RMR of plateau pikas were expressed as oxygen consumption
per hour per unit body mass [mL O2/(g·h)] and measured using
an 8-channel FMS (Sable Systems International, Henderson, NV,
United States) portable respiratory metabolism system. A
biochemical incubator was used to control the chamber
temperature, and the experimental temperature was set at
27.5°C (which is within the pika thermal neutral zone) with a
standard error of 0.5°C. Metabolic measurements were conducted

after the pikas had acclimatized in the chamber for 0.5 h and were
resting. The RMRs of seven pikas were measured simultaneously,
and a blank tube was used as the baseline for carbon dioxide,
oxygen, water vapor, and temperature (Tan et al., 2020; Yu et al.,
2021). Four rounds of metabolism were measured in 2 h, with
each round lasting 30 min. When the chamber temperature was
27.5°C, the average of the lowest metabolic rates of each
individual over at least 10 min was selected as the RMR
(Boratyński et al., 2017). RMR is the minimum energy
requirement for animals to maintain normal physiological
activities within a thermally neutral environmental
temperature, while at rest (Arnold et al., 2021). Before the
experiment, the pikas were fasted for 2–3 h, and their body
mass and temperature were measured using an electronic
balance and rectal thermometer, respectively. A digital
thermometer probe was inserted gently about 2 cm into the
rectum; the measurement time did not exceed 30 s.

Noradrenaline (NE) induction is widely used to determine
NST because induced heat generation and cold induction are
equivalent and the mechanism is the same. The dose was
0.7 mg/kg in reference to the seasonal variation of NST in
plateau pika measured by Wang (Wang and wnag, 1990). The
10 plateau pikas at each altitude were brought back to the
laboratory and allowed to adapt for 24 h. The pikas were
raised in a single cage under 12 L:12 D illumination in the
laboratory, fed with sufficient amounts of rabbit pellet feed
(Jiangsu Syu Pharmaceutical Biological Engineering Co., Ltd.),
provided water ad libitum, and adapted for 2–3 h before the
experiment. NST was measured using an 8-channel FMS
respiratory metabolic measurement system. NE was injected
subcutaneously into the back with a dose equivalent to pika
body weight (0.4 mg/kg). The pikas were immediately put back
into the respiratory chamber for 30 min. NE was injected with
norepinephrine (1 ml containing 2 mg), having been diluted to
0.4 mg/ml by adding normal saline. The NE was produced by
Shanghai Wellhope Pharmaceutical Co., Ltd. In general, the peak
in metabolic response occurs 10–45 min after the NE injection. A
scatterplot of oxygen consumption against determination time
was generated, and the average value of 10 consecutive and stable
maximum values was taken as the NST value.

Reverse Transcription (RT) and Quantitative
Real-Time PCR (qPCR)
qRT-PCR was used to determine the expression of pparα, pgc-1α,
CREB, PRDM16, SLN and uncoupling protein 1 (UCP1). The
species-specific primer sets and 18s-actin of the genes in plateau
pika were designed in accordance with the reference gene
sequences in the NCBI (national center for biotechnology
information) website (http://www.ncbi.nlm.nih.gov/) for
reference North American pika gene sequences. Primer6.0
software was used to design primers.

Total RNA was extracted from tissues using the Uniq-10
Column Trizol Total RNA Extraction Kit (B511321) in
accordance with the kit instructions. The primer was set for
18s and six transforming genes were designed for quantitative
real-time PCR. Quantitative real-time PCR was completed using
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the 2SG Fast qPCR Master Mix (B639271, BBI, Roche) in the
LightCycler480 II type fluorescent quantitative PCR instrument
(Roche, Rotkreuz, Switzerland). qRT-PCR was carried out in a
10-μL reaction system, which was composed of 5 μL of 2
SybrGreen qPCR Master Mix, 1 μL of cDNA and 0.2 μL of
each primer (10 μM/L), and 3.6 μL of ddH2O. All PCR
reactions were repeated. The thermal cycling conditions
were as follows: 95°C for 3 min, 45 cycles at 95°C for 5 s,
and 60°C for 30 s. The melting curve analysis revealed genes
and 18s-amplified single-PCR and final products. We
constructed a standard curve for each gene by diluting the
cDNA sequence fivefold. The standard curve analysis of target
genes and 18 s showed that they had similar amplification
efficiency, which ensured the effectiveness of the comparative
quantification method. Gene expression was calculated using
the 2−ΔΔCt method and expressed as relative quantities. The
nucleotide sequences of primers used for qPCR are shown in
Supplementary Table S1.

Statistical Analysis
All data analyses were conducted using R 3.4.3 software. Body
mass, RMR, and metabolism-related gene expression levels were
analyzed using two-way analysis of variance. Prior to all statistical
analyses, data were examined for assumptions of normality and
homogeneity of variance by using Shapiro–Wilk and Levene tests,
respectively. Differences among groups were detected using
Duncan’s multiple range test. Results were presented as
mean ± 0.5 standard error (SE); n is the sample size. p < 0.05
was considered statistically significant.

RESULTS

RMR and Body Mass
The bodymasses of plateau pikas from the high- andmiddle-altitude
regions were significantly higher than those from low-altitude regions
(F � 7.16, p < 0.05; Figure 1A). The mass-corrected RMRs of plateau
pikas were 1.55 ± 0.18, 1.52 ± 0.33, and 1.39 ± 0.17ml/(g·h) in high-,
middle-, and low-altitude regions, respectively. The RMRs of plateau
pikas from high- and middle-altitude regions were significantly

higher than those from the low-altitude region (F � 3.49,
p < 0.05; Figure 1B).

Gene Expression in Adipose Tissue
To explore molecular signatures of the thermogenesis of WAT
and BAT, we performed profiling of gene expression in the two
fat tissues from the three elevation groups. No significant
difference was observed in gene expression between the sexes
(F � 0.36, p > 0.05), whereas significant differences were
detected between the three altitudes (F � 15.56, p < 0.05).
UCP1, PRDM16, and PGC-1a are the key transcriptional
regulators associated with browning and BAT, they were the
transcriptional co-activator that is involved in browning and
mitochondrial biogenesis. The expression levels of the UCP1
protein in BAT from high- and medium-altitude regions were
higher than those from the low-altitude region, which indicates
that BAT is specialized for NST and energy dissipation through
the action of UCP1. Evidence for an increase in NST is provided
in the supplementary material (Supplementary Figure S1).
Similar results were obtained for pgc-1α (Figures 2A,C). The
expression levels of pgc-1α, pparα, and PRDM16 genes in the
WAT and BAT of plateau pikas from high- and medium-
altitude regions were significantly higher than those from the
low-altitude region (p < 0.05; Figures 2A,C).

Gene Expression in Liver
Liver is a metabolic organ, and its metabolic function is controlled
by metabolic hormones such as insulin. To explore the molecular
characteristics of hepatic gluconeogenesis in liver, we detected the
differential expression of energy metabolism molecules in three
plateau pika samples at different altitudes. No significant
difference was observed between the sexes (F � 1.587, p >
0.05), whereas a significant difference in gene expression levels
was found between altitudes (F � 13.59, p < 0.05). The main
transcription factors inducing gluconeogenesis include CREB,
FoxO1, and several nuclear receptors. PGC-1α is a key
transcriptional coactivator for FoxO1 in hepatic
gluconeogenesis, which plays a key role in maintaining
long-term gluconeogenesis under conditions of scarce food
resource. The expression levels of pgc-1α and pparα genes in

FIGURE 1 | Comparisons of body mass and RMR of plateau pikas from regions with different altitudes. Different lowercase letters indicate significant differences
among elevations (p < 0.05). Same lowercase letters indicate have not significant difference among elevations (ns p > 0.05).
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the liver of plateau pikas from the high-and medium-altitude
regions were significantly higher than those from the low-
altitude region, but the expression levels of the CREB gene
were not significantly different between the three regions (p >
0.05, Figure 2B).

Gene Expression in the Skeletal Muscle
As the largest organ, skeletal muscle is also a major contributor to
metabolic rate and can significantly affect metabolism and body
weight by increasing muscle energy expenditure through non-
shivering thermogenesis. We studied the differential expression
of thermogenic molecules in the skeletal muscle of pikas at the
three altitudes. No significant difference was observed in gene
expression between the sexes (F � 0.78, p > 0.05), but gene
expressions in the three regions were significantly different (F �
11.56, p < 0.05). The expression levels of pgc-1α, pparα, and SLN
genes in the muscle of plateau pikas from the high-altitude region
were significantly higher than those from the medium-altitude
region (F � 15.49, p < 0.05). The expression levels of pgc-1α,
pparα, and SLN genes of plateau pikas from the medium-altitude

region were significantly higher than those from the low-altitude
region (F � 14.91, p < 0.05; Figure 2D).

DISCUSSION

Adaptive evolution is a hot topic in evolutionary ecology.
Elucidating the selection pressures that drive the evolution of
metabolic rate is fundamental to understanding the evolution of
the morphology, physiology, behavior, and life histories of
animals (McKechnie and Swanson, 2010). In the present
study, the metabolic rates of plateau pikas from the high- and
middle-altitude regions were significantly higher than those from
the low-altitude region. The expression levels of pparα, PRDM16,
and UCP1 in the WAT and BAT of plateau pikas from high and
medium altitudes are significantly higher than in those from low
altitude. Simultaneously, the expression levels of SLN genes in
skeletal muscle and liver significantly increase in high-altitude
pikas. These data support the contention that through long-term
adaptation, the plateau pika has adapted to high altitude and

FIGURE 2 | Gene expression of different tissues in plateau pika from regions with different altitudes. Note: (A) Expression of pgc-1α, pparα,PRDM16 and UCP1
genes inWAT. (B) Expression of pgc-1α, pparα andCREB genes in liver. (C) Expression of pgc-1α, pparα, PRDM16, andUCP1 genes in BAT. (D) Expression of pgc-1α,
pparα, and SLN genes in skeletal muscle. Different lowercase letters indicate significant differences among elevations (p < 0.05). Same lowercase letters indicate have
not significant difference among elevations (ns p > 0.05).
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evolved efficient approaches to deal with the extreme cold and
harsh environments on the Qinghai–Tibet Plateau.

RMR and Body Mass
Selective pressures affecting metabolism are complex and can
influence metabolic rate through multiple pathways (Zheng et al.,
2014b) such as body size, climate, activity, and habits (Killen et al.,
2016). Body mass is the most direct indicator of animal energy
reserves (Swanson et al., 2017). For example, statistical tests found
that the metabolic rate of 533 species of birds was positively
correlated with body mass (McNab, 2009). In the present study,
the body masses of plateau pikas from high- and middle-altitudes
were significantly higher than those from the low altitude.
Significant correlations between body mass and metabolic rate
were found in the hamster subfamily (Bozinovic, 1992).
According to Bergmann’s law, the increase in body mass
decreases the surface-to-volume ratio, thereby reducing heat
loss and living costs (Zheng et al., 2014a). Many variables
associated with physiology are correlated with latitude,
indicating that climate is an important factor for the evolution
of life-history traits (Tószögyová, 2020). Meta-analyses about the
metabolic rate of 69 species of tropical birds and 59 species of
temperate birds found that tropical migrants in temperate
habitats have lower metabolic rates than do temperate
residents (Wiersma et al., 2007). Compared with Cricetulus
barabensis kept at room temperature, the energy intake of
individuals adapted to a low temperature was higher while the
energy intake of individuals adapted to a high temperature was
lower (Zhou et al., 2015). The RMRs of plateau pikas in the
current study inhabiting high altitude are significantly higher
than those of pikas inhabiting low altitude. High metabolic
rates may be caused by the biochemical activities of several
tissues including the liver, BAT, and skeletal muscle, which all
have high mitochondrial oxidative phosphorylation rates

(Burton et al., 2011; Selman et al., 2013). Increased
metabolism plays an important role in thermal regulation in
animals living in an extremely cold environment (Gordon,
2012; McKie et al., 2019).

Gene Expression in WAT and BAT
Cold and hypoxia are defining features of the Qinghai–Tibet
Plateau environment, and plateau pika have developed tolerances
to this harsh environment (Xie et al., 2014; Wei et al., 2016).
Consistent with previous studies that demonstrated that pika
have tolerance to hypoxia and low-temperatures (Yang et al.,
2006; Zhu et al., 2018), a previous study showed that plateau pika
can effectively endure extremely cold environments (Li et al.,
2001). Earlier studies found that plateau pika have high NST to
cope with the cold environment on the plateau in comparison to
Ochotonidae from other regions (Wang et al., 2006; Luo et al.,
2008). NST is related to tissue heat production, especially adipose
tissue, which is important in regulating body temperature and
energy homeostasis in cold environments (Zhu et al., 2017b). As
two major types of adipose tissue, WAT is involved in energy
storage and BAT is involved in energy expenditure and
thermogenesis. BAT and WAT can be conditionally
interconverted in response to neuroendocrinal factors, β-3-
adrenergic stimulation, and cold stress exposure. WAT
responds quickly to environmental changes under cold
conditions and takes on the characteristics of BAT. When
animals inhabit a cold environment, WAT may possibly
transform into beige and brown adipocytes to increase NST in
order to adapt to cold conditions (Nedergaard et al., 2007)
(Figure 3A).

The intermittent cold exposure experiment demonstrated that
plateau pika kept in warm temperatures have little classical brown
fat, but the “browning” of WATs is detected rapidly upon cold
exposure. The expression of several brown fat differentiation

FIGURE 3 | Schematic of energy metabolism in various tissues of plateau pika. Note: The red box represents significant change in gene expression, whereas the
green box represents no significant change in gene expression among regions with different altitudes. (A–C) represent the metabolic process of adipose tissue, muscle
tissue and liver tissue, respectively.
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markers, including UCP1, increases simultaneously. The increase
in UCP1 expression enhances adaptive thermogenesis (Bai et al.,
2015). The study about Tupaia belangeri shows that RMR and the
expression levels of pparα, pgc-1α, and PRDM16 increase
significantly under cold acclimation, suggesting that browning
may appear in WAT (Hou et al., 2020). A genomic, proteomic,
and morphological study of energy metabolism in highland pikas
and Tupaia belangeri in summer and winter studies revealed that
subcutaneous WAT in winter show BAT morphological and
histological features (Li et al., 2019). Furthermore, BAT-
specific genes, such as UCP1, Cox4, and pgc-1α, are highly
expressed in WAT in winter (Li J. et al., 2018). These results
suggest that plateau pika adapt to a cold environment by
browning scarfskin WAT and adding BAT to increase heat
production. Our results suggest that a high expression of pgc-
1αmay be involved in the critical adaptation mechanisms in pika
to cope with the harsh environment of the Qinghai–Tibet plateau.
pgc-1α is essential for brown fat thermogenesis and
complementary mitochondrial biogenesis, and is also involved
in the browning of WAT (Finck and Kelly, 2006). High mRNA
expression levels of pgc-1α are observed in high-altitude groups,
suggesting high levels of thermogenesis within the tissues.
Overall, our study indicated that plateau pikas inhabiting the
high altitudes of the Qinghai–Tibet Plateau can regulate their
relative gene expression in adipose tissue to, in turn, regulate
metabolic level and thermogenic-related physiological
performance.

Gene Expression in Skeletal Muscle
The skeletal muscle is a major determinant of basal metabolic rate
(Maurya et al., 2018). Skeletal muscle also plays a central role in
temperature homeostasis and can be recruited to produce heat
through NST (Nowack et al., 2017). As an uncoupler of the
sarcoplasmic reticulum calcium ATPase (SERCA) pump, SLN
can enhance futile cycling and increase ATP hydrolysis, thereby
creating chronic energy demand (Sahoo et al., 2013). The SLN/
SERCA interaction plays a dual role: it creates energy demands in
muscle and activates Ca2+-dependent signaling, such as pgc-1α
and pparα, to increase ATP production through increased
mitochondrial biogenesis (Shaikh et al., 2016) (Figure 3B).
In genetically engineered SLN mouse models, SLN knockout
mice have reduced cold adaptive thermogenesis (Bal et al.,
2018). The loss of SLN predisposes mice to diet-induced
obesity, indicating that SLN may regulate their energy
balance (Bal et al., 2012). Compared to SLN gene-lacking
mice, the overexpression of the SLN gene leads to a loss of
body mass and increases in the depletion of fat deposits (Rotter
et al., 2018). The Rotter et al. (2018) study was conducted at
thermoneutrality, which can minimize the contribution to
metabolic rate of thermogenic mechanisms. Thus, a high
energy consumption may be due to SLN-mediated energy
expenditure (Maurya et al., 2015). In the present study, the
SLN gene expression level of plateau pika from the high-altitude
region was significantly higher than that of plateau pika from
the middle-altitude region, which in turn was significantly
higher than the SLN gene expression of pika from the low-
altitude region. This result suggests that the SLN gene is

important in regulating the heat production of plateau pikas
at different altitudes.

Gene Expression of Liver
The liver is an essential metabolic organ, and its metabolic
function is regulated by insulin and other metabolic
hormones. Numerous transcription factors and coactivators,
including CREB, pparg, and pgc-1 regulate the expression of
enzymes that catalyze key steps of metabolic pathways, thus
managing the energy metabolism of liver (Rui, 2014). When
food is scarce, the hepatic gluconeogenesis pathway is enhanced
by decreasing the concentration of insulin and increasing the
concentration of insulin counter-regulatory hormones, such as
glucagon (Han et al., 2016). pgc-1α, CREB/CRTC2, and FoxO1
genes are critical in coordinating the fasting-mediated activation
of gluconeogenesis in the liver (Oh et al., 2013) (Figure 3C). In our
study, the pgc-1α and pparα in the liver of plateau pika from the
high-altitude region were significantly higher than those of pika
from the low-altitude region, whereas no significant difference in
the CREB gene was detected among the three regions, suggesting
that ATP depletion is due to activity-induced energy demands and
the storage of fatty acids, cholesterol, glycogen, and proteins,
especially in liver (Ke et al., 2018).

In conclusion, the RMR, and the expression of skeletal muscle
thermogenic genes and lipid transcription factor genes in plateau
pika increases with rising altitude on the Qinghai–Tibet Plateau.
Therefore, plateau pikas inhabiting high-altitude environments
can survive extreme environments by increasing their metabolic
rate, and gene expression of skeletal muscle thermogenesis and
adipose tissue. Browning increases the expression of UCPI to
promote BAT cell differentiation, thermogenesis, and
metabolism. These physiological and gene expression changes
confer plateau pika the ability to survive in an extreme
environment.
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